4.7 Article

Reduced graphene oxide-TiO2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole

Journal

CHEMOSPHERE
Volume 261, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127702

Keywords

Graphene oxide; Ibuprofen; Sodium alginate; Sulfamethoxazole; Titanium dioxide; Photodegradation

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2018R1A6A1A03024962]

Ask authors/readers for more resources

In this study, graphene oxide and titanium dioxide in combination with sodium alginate were used to synthesize the reduced graphene oxide-TiO2 /sodium alginate (RGOT/SA) aerogel. The potential of RGOT/ SA aerogel was evaluated for the photocatalytic degradation of ibuprofen and sulfamethoxazole and was compared with that of bare titanium dioxide nanoparticles. More than 99% removal of both the contaminants was obtained within 45-90 min by using the RGOT/SA aerogel under UV-A light. Mineralization of both the pollutants was also higher in case of RGOT/SA aerogel as compared to bare TiO2 nanoparticles. The optimal mass ratio of TiO2 nanoparticles with respect to graphene oxide was 2:1 in RGOT/SA aerogel in the presence of 1 wt% sodium alginate solution. High photodegradation of Ibuprofen was observed at neutral pH and acidic to neutral pH was found suitable for the photodegradation of sulfamethoxazole. Three-dimensional interconnected macroporous assembly, large surface area for settling TiO2 nanoparticles, efficient charge partitioning, and enhanced physical and chemical adsorption of ibuprofen and sulfamethoxazole on the surface of RGOT/SA aerogel were the significant characteristics of RGOT/SA aerogels. Moreover, ease of separation and recyclability of the RGOT/SA aerogel could further save the extra energy used to separate nanoparticles from the effluent. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available