4.6 Article

Proanthocyanin-Capped Biogenic TiO2 Nanoparticles with Enhanced Penetration, Antibacterial and ROS Mediated Inhibition of Bacteria Proliferation and Biofilm Formation: A Comparative Approach

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 27, Issue 18, Pages 5817-5829

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.202004828

Keywords

antibiotics; biofilms; nanoparticles; titanium; urinary-tract infections

Ask authors/readers for more resources

In this study, biofunctionalized TiO2 nanoparticles were synthesized with Grape seed extract proanthocyanin polyphenols, showing enhanced stability and inhibitory effects on cell proliferation and biofilm formation. The nanoparticles exhibited increased intracellular uptake and reactive oxygen species generation in urinary tract infection causing bacteria, suggesting their potential as a novel antibacterial nano-formulation for combating UTIs.
Biofunctionalized TiO2 nanoparticles with a size range of 18.42 +/- 1.3 nm were synthesized in a single-step approach employing Grape seed extract (GSE) proanthocyanin (PAC) polyphenols. The effect of PACs rich GSE corona was examined with respect to 1) the stability and dispersity of as-synthesized GSE-TiO2-NPs, 2) their antiproliferative and antibiofilm efficacy, and 3) their propensity for internalization and reactive oxygen species (ROS) generation in urinary tract infections (UTIs) causing Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus saprophyticus strains. State-of-the-art techniques were used to validate GSE-TiO2-NPs formation. Comparative Fourier transformed infrared (FTIR) spectral analysis demonstrated that PACs linked functional -OH groups likely play a central role in Ti4+ reduction and nucleation to GSE-TiO2-NPs, while forming a thin, soft corona around nascent NPs to attribute significantly enhanced stability and dispersity. Transmission electron microscopic (TEM) and inductively coupled plasma mass-spectroscopy (ICP-MS) analyses confirmed there was significantly (p<0.05) enhanced intracellular uptake of GSE-TiO2-NPs in both Gram-negative and -positive test uropathogens as compared to bare TiO2-NPs. Correspondingly, compared to bare NPs, GSE-TiO2-NPs induced intracellular ROS formation that corresponded well with dose-dependent inhibitory patterns of cell proliferation and biofilm formation in both the tested strains. Overall, this study demonstrates that -OH rich PACs of GSE corona on biogenic TiO2-NPs maximized the functional stability, dispersity and propensity of penetration into planktonic cells and biofilm matrices. Such unique merits warrant the use of GSE-TiO2-NPs as a novel, functionally stable and efficient antibacterial nano-formulation to combat the menace of UTIs in clinical settings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available