4.6 Article

Ni/Fibrous type SBA-15: Highly active and coke resistant catalyst for CO2 methanation

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 229, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2020.116141

Keywords

Ni/F-SBA-15; Fibrous morphology; Ni dispersion; Basicity; CO2 methanation

Funding

  1. Universiti Malaysia Pahang (UMP) [RDU1803174]

Ask authors/readers for more resources

By transforming rod-like SBA-15 into fibrous type F-SBA-15 and evaluating Ni/F-SBA-15 in CO2 methantion, a superior catalytic performance was achieved due to the favorable physicochemical properties of F-SBA-15. This was evidenced by the higher stability and coke resistance ability demonstrated by Ni/F-SBA-15 compared to Ni/SBA-15.
The rod-like SBA-15 was transformed into fibrous type SBA-15 (F-SBA-15). The Ni/F-SBA-15 was catalytically evaluated in CO2 methanation and compared with conventional Ni/SBA-15. A superior catalytic performance was shown by Ni/F-SBA-15 (CO2 conversion = 99.7%, and CH4 yield = 98.2%) than Ni/SBA-15 (CO2 conversion = 91.1%, and CH4 yield = 87.5%). This phenomenon was attributed to the favorable physicochemical properties of F-SBA-15 as evidenced by the characterization results. A higher homogeneity of finer Ni was embedded onto the F-SBA-15 support, subsequently strengthened the Ni interaction with F-SBA-15, and increased the amount of moderate basic sites. The in situ FTIR studies evidenced the CO2 methanation over both catalysts proceeded via CO2 dissociation pathway. Three intermediate species (linear carbonyl, unidentate, and bidentate carbonates) were detected for Ni/F-SBA-15, while only bidentate carbonates were detected for Ni/SBA-15, signifying excellent catalytic attributes of Ni/F-SBA-15. Additionally, Ni/F-SBA-15 demonstrated higher stability and coke resistance ability than Ni/SBA-15. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available