4.7 Article

Circular RNA circPLK1 promotes breast cancer cell proliferation, migration and invasion by regulating miR-4500/IGF1 axis

Journal

CANCER CELL INTERNATIONAL
Volume 20, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12935-020-01694-x

Keywords

Breast cancer; circPLK1; miR-4500; IGF1

Categories

Ask authors/readers for more resources

BackgroundCircular RNAs (circRNAs) can regulate gene expression in different malignancies. However, the biological functions of circRNA polo-like kinase-1 (circPLK1) in the tumorigenesis of breast cancer (BC) and its potential mechanisms have not been well elucidated yet.MethodsThe expression levels of circPLK1, microRNA-4500 (miR-4500), insulin-like growth factor 1 (IGF1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell viability, cell cycle distribution, cell migration and invasion were determined by Cell Counting Kit-8 (CCK-8) assay, flow cytometry and transwell assay, respectively. Western blot assay was used to analyze the protein levels of cyclin-dependent kinase (CDK) 4 and CDK-6. The relationship between miR-4500 and circPLK1 or IGF1 was predicted by starBase v3.0 and verified by dual-luciferase reporter assay and RNA pull-down assay. The mice xenograft model was established to investigate the roles of circPLK1 in vivo.ResultsCircPLK1 and IGF1 were upregulated and miR-4500 was downregulated in BC tissues and cells. Interference of circPLK1 inhibited BC cell growth, migration and invasion, which was reversed by overexpression of IGF1. Moreover, circPLK1 could directly bind to miR-4500 and IGF1 was verified as a direct target of miR-4500. Furthermore, IGF1 overexpression abated the inhibitory effects of miR-4500 upregulation on proliferation, migration and invasion of BC cells. Mechanically, circPLK1 was a sponge of miR-4500 to regulate IGF1 expression in BC cells. Besides, circPLK1 knockdown suppressed tumor growth via upregulating miR-4500 and downregulating IGF1.ConclusionsCircPLK1 silence inhibited BC cell growth, migration and invasion by regulating miR-4500/IGF1 axis, suggesting circPLK1/miR-4500/IGF axis might be a potential therapeutic target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available