4.7 Review

Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glioblastoma progression

Journal

BRIEFINGS IN BIOINFORMATICS
Volume 22, Issue 5, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bib/bbaa365

Keywords

bioinformatics; machine learning; central nervous system disorders; glioblastoma; comorbidity; pathway; ontology; proteins; survival analysis

Funding

  1. CAS-TWAS Presidents Fellowship [2016CTF014]

Ask authors/readers for more resources

This study investigates the relationship between central nervous system disorders and glioblastoma by analyzing shared differentially expressed genes and cell signaling pathways. The findings suggest that CNS disorders may influence the progression, growth, or establishment of glioblastoma, and could potentially serve as therapeutic targets. The comparison with gold standard databases offers further support for the identified biomarkers in the pathology underlying the progression of GBM.
Glioblastoma (GBM) is a common malignant brain tumor which often presents as a comorbidity with central nervous system (CNS) disorders. Both CNS disorders and GBM cells release glutamate and show an abnormality, but differ in cellular behavior. So, their etiology is not well understood, nor is it clear how CNS disorders influence GBM behavior or growth. This led us to employ a quantitative analytical framework to unravel shared differentially expressed genes (DEGs) and cell signaling pathways that could link CNS disorders and GBM using datasets acquired from the Gene Expression Omnibus database (GEO) and The Cancer Genome Atlas (TCGA) datasets where normal tissue and disease-affected tissue were examined. After identifying DEGs, we identified disease-gene association networks and signaling pathways and performed gene ontology (GO) analyses as well as hub protein identifications to predict the roles of these DEGs. We expanded our study to determine the significant genes that may play a role in GBM progression and the survival of the GBM patients by exploiting clinical and genetic factors using the Cox Proportional Hazard Model and the Kaplan-Meier estimator. In this study, 177 DEGs with 129 upregulated and 48 downregulated genes were identified. Our findings indicate new ways that CNS disorders may influence the incidence of GBM progression, growth or establishment and may also function as biomarkers for GBM prognosis and potential targets for therapies. Our comparison with gold standard databases also provides further proof to support the connection of our identified biomarkers in the pathology underlying the GBM progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available