4.5 Article

Possible involvement of D2/D3 receptor activation in ischemic preconditioning mediated protection of the brain

Journal

BRAIN RESEARCH
Volume 1748, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.brainres.2020.147116

Keywords

Ischemia-reperfusion; Preconditioning; Dopamine D2/D3 receptor; Oxidative stress; Inflammation; Infarction

Categories

Ask authors/readers for more resources

Ischemic stroke is a medical condition that arises because of poor blood supply to the brain. Reperfusion being salvage to the brain further causes, exacerbation of tissue injury, known as reperfusion injury. Ischemic preconditioning (IPC) has been known to provide benefits against ischemia reperfusion (I/R) injury. Dopamine D2/D3 receptor mediated several pathways are also reported as mediators in the IPC mediated neuroprotection. This study investigates the possible involvement of D2/D3 receptor activation in IPC mediated neuroprotection in the I/R brain. Global cerebral ischemia/reperfusion (GCI/R) injury in swiss albino mice was induced by occluding the common carotid arteries for 17 min, followed by 24 h reperfusion. IPC was provided by giving 3 episodes of I/R prior to Ischemia (17 min). Morris water maze (MWM) was used to assess the spatial learning, memory and Rota rod, lateral push test as well as inclined beam test were conducted to assess the motor functions in animals. Cerebral oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-alpha, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, infarct size (% weight and % volume), and histopathological changes were also assessed. Haloperidol (0.05 mg/kg, i.p) was used to antagonize the effects of D2/D3 receptor activation. I/R animals showed reduction in memory, motor function, increase in cerebral oxidative stress, inflammation, AChE activity, infarct size and histopathological changes. Episodes of IPC prior to ischemia, attenuated the deleterious effects of I/R injury. Administration of haloperidol abolished the protective effects of IPC. Hence, it may be concluded that IPC mediated neuroprotection may involves dopamine D2/D3 receptor activation in mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available