4.8 Article

Highly sensitive label-free electrochemical aptasensors based on photoresist derived carbon for cancer biomarker detection

Journal

BIOSENSORS & BIOELECTRONICS
Volume 170, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2020.112598

Keywords

Cancer biomarker; Label-free; Electrochemical; Carbon; Aptamer; PDGF-BB

Funding

  1. National Science Foundation (NSF) [1611088, 1648451]
  2. Directorate For Engineering
  3. Div Of Electrical, Commun & Cyber Sys [1611088] Funding Source: National Science Foundation

Ask authors/readers for more resources

-Label-free electrochemical aptasensors for cancer biomarker detection can be a promising means for early detection of cancer due to their high sensitivity, selectivity, and stability, and low cost. In this study, a highly sensitive and selective label-free electrochemical aptasensor based on carbon microelectromechanical systems (C-MEMS) was developed for the detection of platelet-derived growth factor-BB (PDGF-BB). The active electrodes of the aptasensors were synthesized via carbonization of SU-8 derived electrodes at high temperatures in an oxygen-free furnace. An oxygen-plasma oxidation treatment was used to functionalize the C-MEMS electrodes, which provided efficient covalent immobilization of amino terminated affinity aptamers. The turn-off and turn on detection strategies-based on capacitance and resistance measurement, respectively-were employed. The capacitance detection strategies exhibited a wide linear response range of 0.01-50 nM, with a high sensitivity of 3.33 mF cm-2 Logc-1 (unit of c, nM) and a low limit of detection of 7 pM (S/N = 3). The resistance detection strategies exhibited an even wider linear response range of 0.005-50 nM, and a lower limit of detection of 1.9 pM (S/N = 3), with a high sensitivity of 1.65 x 103 Omega Logc(-1) (unit of c, nM). Both detection strategies provided high selectivity for PDGF-BB and high stability of 90.34% after 10 days. This research demonstrates that the developed label-free electrochemical C-MEMS based PDGF-BB aptasensor is highly sensitive, selective, and robust. This aptasensor is a promising prospect for the highly demanding task of early detection of cancer biomarkers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available