4.8 Article

Controlling distance, size and concentration of nanoconjugates for optimized LSPR based biosensors

Journal

BIOSENSORS & BIOELECTRONICS
Volume 170, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2020.112657

Keywords

Distance dependency; Localized surface plasmon resonance (LSPR); Peptide; Tunable biosensor; Virus detection

Funding

  1. Japan Society for the Promotion of Science [17F17359, 19F19064]
  2. Grants-in-Aid for Scientific Research [19F19064, 17F17359] Funding Source: KAKEN

Ask authors/readers for more resources

In this report, we have examined the distanceand size-dependent localized surface plasmon resonance (LSPR) between fluorescent quantum dots (QDs) and adjacent gold nanoparticles (AuNPs) to provide a comprehensive evaluation, aiming for practical application in biosensing platform. A series of peptides with different chain lengths, connected between QDs and AuNPs is initially applied to prepare various CdSe QDs-peptide-AuNP systems to optimize LSPR signal. Separation distance between two nanoparticles of these systems before and after conjugation is also confirmed by quantum mechanical modeling and corroborated with their LSPR influenced fluorescence variations. After detailed optimizations, it can be noted that larger sized AuNPs make strong quenching of QDs, which gradually shows enhancement of fluorescence with the increment of distance and the smaller sized AuNPs. Depending on the requirement, it is possible to tune the optimized structure of the CdSe QD-peptide-AuNP nanostructures for the application. In this work, two different structural designs with different peptide chain length are chosen to construct two biosensor systems, observing their fluorescence enhancement and quenching effects, respectively. Using different structural orientation of these biosensors, two nano conjugates has applied for detection of norovirus and influenza virus, respectively to confirm their application in sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available