4.5 Article

Differential confocal measurement for surface topography with microstructures based on spiral scanning and wavelet filter

Journal

APPLIED OPTICS
Volume 59, Issue 36, Pages 11359-11370

Publisher

OPTICAL SOC AMER
DOI: 10.1364/AO.408652

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China [51675288, 51805280]

Ask authors/readers for more resources

This paper proposes a novel spiral-scanning laser differential confocal measurement method (SSLDCM) for fast and precise measurement of surface topography with microstructures. Spiral plane scanning is used to eliminate frequent acceleration and deceleration problems in traditional raster-scanning differential confocal measurement systems and helps to keep the measuring process efficient and stable. To solve the problem of uneven sampling distribution during spiral scanning, a variable sampling rate method is adopted to distribute the sampling points at equal intervals, which would help to reduce the time of the 3D imaging process. A denoising method based on an adaptive wavelet threshold is proposed to filter the existing noise during the measuring process. An experimental measurement platform based on SSLDCM is constructed, and the axial response curve is tested and analyzed. The linear region range of the experimental platform reaches 13 mu m, and the slope is about 164.15 mV/mu m. In addition, the measurement results of a silicon wafer specimen by SSLDCM show good consistency with a commercial high-precision microscope, and the largest deviation is less than 2.71%. The SSLDCM has great potential to be used in various noncontact surface measurement applications with high efficiency and accuracy. (C) 2020 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available