4.8 Article

Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 278, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119327

Keywords

Iron/iridium bimetallic alloy; Catalysts; Overall water splitting; Stability; Large current density

Funding

  1. National Natural Science Foundation of China [21872040]
  2. Hundred Talents Program of Guangxi Universities
  3. Excellent Scholars and Innovation Team of Guangxi Universities
  4. Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology [2019Z009]

Ask authors/readers for more resources

In this work, FeIr bimetallic alloy self-supported on nickel foam is prepared by hydrothermal method, with average particle size of 2.17 nm and the Ir-loading is only 0.936 wt.%. It displays ultralow overpotentials for OER (200 mV) and HER (16.6 mV) at 20 mA cm(-2) in alkaline media, which is superior to the ever reported HER catalysts. For overall water splitting, it only needs 1.48 V to derive a current density of 10 mA cm(-2), and it also demonstrates an outstanding long-term stability with an ignorable decline in performance after testing 504 h at the current density of 150 mA cm(-2). The excellent performance is ascribed to the ultrasmall FeIr alloy, the 3D conductive substrate, and the ethylene-glycol ligand environment facilitates highly efficient HER through hydrogen spillover. Thus, this work undoubtedly provides a promising method for developing ultralow-loading noble metal catalysts with excellent performance at large current density for overall water splitting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available