4.7 Article

Co@Co3O4 core-shell particle encapsulated N-doped mesoporous carbon cage hybrids as active and durable oxygen-evolving catalysts

Journal

DALTON TRANSACTIONS
Volume 45, Issue 13, Pages 5575-5582

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6dt00102e

Keywords

-

Funding

  1. National Science Foundation of China [21345003]
  2. Natural Science Foundation of Gansu [145RJZA132, 143GKDA013]
  3. Key Laboratory of Catalytic engineering of Gansu Province and Resources Utilization, Gansu Province

Ask authors/readers for more resources

Cobalt-based nanomaterials are promising candidates as efficient, affordable, and sustainable alternative electrocatalysts for the oxygen evolution reaction (OER). However, the catalytic efficiency of traditional nanomaterials is still far below what is expected, because of their low stability in basic solutions and poor active site exposure yield. Here a unique hybrid nanomaterial comprising Co@Co3O4 core-shell nanoparticle (NP) encapsulated N-doped mesoporous carbon cages on reduced graphene oxide (denoted as Co@Co3O4@ NMCC/rGO) is successfully synthesized via a carbonization and subsequent oxidation strategy of a graphene oxide (GO)-based metal-organic framework (MOF). Impressively, the special carbon cage structure is very important for not only leading to a large active surface area, enhanced mass/charge transport capability, and easy release of gas bubbles, but also preventing Co@Co3O4 NPs from aggregation and peeling off during prolonged electrochemical reactions. As a result, in alkaline media, the resulting hybrid materials catalyze the OER with a low onset potential of similar to 1.50 V (vs. RHE) and an over-potential of only 340 mV to achieve a stable current density of 10 mA cm(-2) for at least 25 h. In addition, metallic Co cores in Co@Co3O4 provide an alternative way for electron transport and accelerate the OER rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available