4.7 Article

Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity

Journal

DALTON TRANSACTIONS
Volume 45, Issue 9, Pages 3888-3894

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5dt04578a

Keywords

-

Funding

  1. National Science Foundation of China [51402334, 51502331, 61376056]
  2. Chinese Academy of Sciences [KGZD-EW-T06]
  3. Science and Technology Commission of Shanghai [13JC1405700, 14520722000]
  4. Shanghai Technical Platform for Testing and Characterization on Inorganic Materials [14DZ2292900]

Ask authors/readers for more resources

Black titania, with greatly improved solar absorption, has demonstrated its effectiveness in photocatalysis and photoelectrochemical cells (PEC), inspiring us to explore the blackening of other wide band-gap oxide materials for enhanced performance. Herein, we report the fabrication of black, reduced Nb2O5 nanorods (r-Nb2O5), with active exposed (001) surfaces, and their enhanced photocatalytic and PEC properties. Black r-Nb2O5 nanorods were obtained via reduction of pristine Nb2O5 by molten aluminum in a two-zone furnace. Unlike the black titania, r-Nb2O5 nanorods are well-crystallized, without a core-shell structure, which makes them outstanding in photocatalytic stability. Substantial Nb4+ cation and oxygen vacancies (V-O) were introduced into r-Nb2O5, resulting in the enhanced absorption in both the visible and near-infrared regions and improved charge separation and transport capability. The advantage of the r-Nb2O5 was also proved by its more efficient photoelectrochemical performance (138 times at 1.23 V-RHE) and higher photocatalytic hydrogen-generation activity (13 times) than pristine Nb2O5. These results indicate that black r-Nb2O5 is a promising material for PEC application and photocatalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available