4.6 Article

The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 87, Issue 6, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02522-20

Keywords

Fusarium graminearum; golgin; RUD3; cis-Golgi; intracellular protein trafficking; virulence; FgRud3

Funding

  1. Natural Science Foundation of Shandong Province [ZR2020MC113, ZR2020MC120, ZR2020QC126]
  2. National Natural Science Foundation of China [31772247]
  3. Shandong Agricultural University Talent Introduction Funding [20171226]

Ask authors/readers for more resources

RUD3 protein, a Golgin protein in Fusarium graminearum, is essential for growth, ascospore discharge, DON biosynthesis, and pathogenicity. It mediates retrograde trafficking in the ER-to-Golgi pathway and plays a crucial role in various aspects of the fungal life cycle and pathogenicity, making it a potential target for disease control.
Golgins are coiled-coil proteins that play prominent roles in maintaining the structure and function of the Golgi complex. However, the role of golgin proteins in phytopathogenic fungi remains poorly understood. In this study, we functionally characterized the Fusarium graminearum golgin protein RUD3, a homolog of (Sc)RUD3/GMAP-210 in Saccharomyces cerevisiae and mammalian cells. Cellular localization observation revealed that RUD3 is located in the cis-Golgi. Deletion of RUD3 caused defects in vegetative growth, ascospore discharge, deoxynivalenol (DON) production, and virulence. Moreover, the Delta rud3 mutant showed reduced expression of tri genes and impairment of the formation of toxisomes, both of which play essential roles in DON biosynthesis. We further used green fluorescent protein (GFP)-tagged SNARE protein SEC22 (SEC22-GFP) as a tool to study the transport between the endoplasmic reticulum (ER) and Golgi and observed that SEC22-GFP was retained in the cis-Golgi in the Delta rud3 mutant. RUD3 contains the coiled coil (CC), GRAB-associated 2 (GA2), GRIP-related Arf binding (GRAB), and GRAB-associated 1 (GA1) domains, which except for GA1, are indispensable for normal localization and function of RUD3, whereas only CC is essential for normal RUD3-RUD3 interaction. Together, these results demonstrate how the golgin protein RUD3 mediates retrograde trafficking in the ER-to-Golgi pathway and is necessary for growth, ascospore discharge, DON biosynthesis, and pathogenicity in F. graminearum. IMPORTANCE Fusarium head blight (FHB) caused by the fungal pathogen Fusarium graminearum is an economically important disease of wheat and other small grain cereal crops worldwide, and limited effective control strategies are available. A better understanding of the regulation mechanisms of F. graminearum development, deoxynivalenol (DON) biosynthesis, and pathogenicity is therefore important for the development of effective control management of this disease. Golgins are attached via their extreme carboxy terminus to the Golgi membrane and are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. In this study, we systematically characterized a highly conserved Golgin protein, RUD3, and found that it is required for vegetative growth, ascospore discharge, DON production, and pathogenicity in F. graminearum. Our findings provide a comprehensive characterization of the golgin family protein RUD3 in plant-pathogenic fungus, which could help to identify a new potential target for effective control of this devastating disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available