4.7 Article

Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death

Journal

APOPTOSIS
Volume 26, Issue 1-2, Pages 52-70

Publisher

SPRINGER
DOI: 10.1007/s10495-020-01645-x

Keywords

Huntington’ s disease; TrkB; CREB; BDNF signaling; PI3K Akt pathway; Mitochondrial damage; Apoptosis; 7; 8-Dihydroxyflavone

Funding

  1. National Institute of Pharmaceutical Education and Research (NIPER)Guwahati under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India
  2. Ministry of Environment Forest and Climate Change, Government of India [GBPI/NMHS-2017-18/HSF-02]

Ask authors/readers for more resources

The study demonstrates that 7,8-DHF can enhance neuronal survival and improve neuronal death in Huntington's disease by activating the TrkB receptor and its downstream targets. This compound may have a novel neuroprotective mechanism against neuronal death induced by 3-NP.
Striatal neurons depends on an afferent supply of brain-derived neurotrophic factor-(BDNF) that explicitly interacts with tropomyosin receptor kinase B (TrkB) receptor and performs sundry functions including synaptic plasticity, neuronal differentiation and growth. Therefore, we aimed to scrutinize an active molecule that functions identical to BDNF in activating TrkB receptor and it's downstream targets for restoring neuronal survival in Huntington disease (HD). Data from in vitro Neuro-2a cell line showed that treatment with 7,8-dihydroxyflavone (7,8-DHF), improved 3-nitropropionic acid (3-NP) induced neuronal death by stabilizing the loss of mitochondrial membrane potential and transiently increased the activity of cAMP-response element-binding protein (CREB) and BDNF via TrkB receptor activation. Consistent with in vitro findings, our in vivo results stated that treatment with 7,8-DHF at a dose of 10 mg/kg body weight ameliorated various behavior alterations caused by 3-NP intoxication. Further histopathological and electron microscopy evidences from striatal region of 3-NP mice brain treated with 7,8-DHF showed more improved neurons with intact mitochondria and less autophagic vacuoles. Protein expression analysis of both in vitro and in vivo study showed that 7,8-DHF promotes neuronal survival through upregulation and phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt at serine-473/threonine-308). Akt phosphorylation additionally phosphorylates Bad at serine-136 and inhibits its translocation to mitochondria thereby promoting mitochondrial biogenesis, enhanced ATP production and inhibit apoptosis mediated neuronal death. These aforementioned findings help in strengthening our hypothesis and has come up with a novel neuroprotective mechanism of 7,8-DHF against 3-NP induced neuronal death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available