4.7 Article

The Benzimidazole SPR719 Shows Promising Concentration-Dependent Activity and Synergy against Nontuberculous Mycobacteria

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 65, Issue 4, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.02469-20

Keywords

Mycobacterium; Mycobacterium avium; antibiotic resistance; experimental therapeutics

Funding

  1. Netherlands Organization for Scientific Research (NWO/ZonMW grant) [Veni 016.176.024]

Ask authors/readers for more resources

SPR719 demonstrates potent activity against MAC and M. kansasii, moderate activity against M. abscessus, and shows promise for combination therapy against NTM. Ethambutol may enhance SPR719 kill rate against M. kansasii and MAC, while synergy with clarithromycin is observed against M. abscessus. Further studies and clinical trials are ongoing for advancing SPR719's clinical development.
Nontuberculous mycobacterial pulmonary disease (NTM-PD) is emerging worldwide. Currently recommended multidrug treatment regimens yield poor outcomes, and new drugs and regimens are direly needed. SPR719, the active moiety of SPR720, is a new benzimidazole antibiotic with limited data on antimycobacterial activity. We determined MICs and MBCs against 138 clinical and reference strains of M. avium complex (MAC), M. kansasii, M. abscessus, M. xenopi, M. malmoense, and M. simiae and determined synergy with antimycobacterial drugs by checkerboard titrations. To study pharmacodynamics, we performed time-kill kinetics assays of SPR719 alone and in combinations against M. avium, M. kansasii, and M. abscessus and assessed synergy by response surface analysis according to Bliss independence. SPR719 showed potent activity against MAC (MIC(9)0, 2 mg/liter) and M. kansasii (MIC90, 0.125 mg/liter) and modest activity against M. abscessus (MIC90, 8 mg/liter); its activity is bacteriostatic and concentration-dependent. We recorded a potential for combination therapy with ethambutol against M. kansasii and M. avium and synergy with clarithromycin against M. abscessus. Ethambutol increased the SPR719 kill rate against M. kansasii but only prevented SPR719 resistance in M. avium. SPR719 is active in vitro against NTM; its activity is strongest against M. kansasii, followed by MAC and M. abscessus. SPR719 shows promise for combination therapy with ethambutol against MAC and M. kansasii and synergy with clarithromycin against M. abscessus. The parent drug SPR720 could have a role especially in MAC pulmonary disease treatment. Further studies in dynamic models and trials are ongoing to advance clinical development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available