4.6 Article

Simulated sleep apnea alters hydrogen sulfide regulation of blood flow and pressure

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00672.2019

Keywords

blood flow; carotid body; cystathionine gamma-Iyase; intermittent hypoxia; mesenteric arteries

Funding

  1. Human Tissue Repository and Tissue Analysis Shared Resource - Department of Pathology, The University of New Mexico Comprehensive Cancer Center
  2. National Cancer Institute (NCI) [2P30CA118100]
  3. National Heart, Lung, and Blood Institute (NHLBI) [HL123301, HL007736]

Ask authors/readers for more resources

In sleep apnea, airway obstruction can lead to intermittent hypoxia, which may impact hydrogen sulfide generation and regulation of blood pressure and vascular resistance. Experimental findings suggest that IH exposure could decrease CSE expression in larger resistance arteries.
In sleep apnea, airway obstruction causes intermittent hypoxia (IH). In animal studies, IH-dependent hypertension is associated with loss of vasodilator hydrogen sulfide (H2S), and increased H2S activation of sympathetic nervous system (SNS) activity in the carotid body. We previously reported that inhibiting cystathionine gamma-Iyase (CSE) to prevent H2S synthesis augments vascular resistance in control rats. The goal of this study was to evaluate the contribution of IH-induced changes in CSE signaling to increased blood pressure and vascular resistance. We hypothesized that chronic IH exposure eliminates CSE regulation of blood pressure (BP) and vascular resistance. In rats instrumented with venous catheters, arterial telemeters, and flow probes on the main mesenteric artery, the CSE inhibitor DL-propargylglycine (PAG, 50 mg/kg/day i.v. for 5 days) increased BP in Sham rats but decreased BP in IH rats [in mmHg, Sham (n = 11): 114 +/- 4 to 131 +/- 6; IH (n = 8): 131 +/- 8 to 115 +/- 7 mmHg, P < 0.05]. PAG treatment increased mesenteric vascular resistance in Sham rats but decreased it in IH rats (day 5/day 1: Sham: 1.50 +/- 0.07; IH: 0.85 +/- 0.19, P < 0.05). Administration of the ganglionic blocker hexamethonium (to evaluate SNS activity) decreased mesenteric resistance in PAG-treated Sham rats more than in saline-treated Sham rats or PAG-treated IH rats. CSE immunoreactivity in IH carotid bodies compared with those from Sham rats. However, CSE staining in small mesenteric arteries was less in arteries from IH than in Sham rats but not different in larger arteries (inner diameter > 200 mu m). These results suggest endogenous H2S regulates blood pressure and vascular resistance, but this control is lost after IH exposure with decreased CSE expression in resistance size arteries. IH exposure concurrently increases carotid body CSE expression and relative SNS control of blood pressure, suggesting both vascular and carotid body H2S generation contribute to blood pressure regulation. NEW & NOTEWORTHY These results suggest that CSE's protective role in the vasculature is impaired by simulated sleep apnea, which also upregulates CSE in the carotid body. Thus, this enzyme system can exert both pro- and antihypertensive effects and may contribute to elevated SNS outflow in sleep apnea.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available