4.7 Article

Static and dynamic analyses of graphene-reinforced aluminium-based composite plate in thermal environment

Journal

AEROSPACE SCIENCE AND TECHNOLOGY
Volume 107, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ast.2020.106354

Keywords

Graphene-reinforced aluminium-based plate; Thermo-mechanical interaction; Vibrations; Buckling and post-buckling behaviors

Funding

  1. National Natural Science Foundation of China (NNSFC) [11802005, 11832002, 11427801]
  2. Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB)
  3. General Program of Science and Technology Development Project of Beijing Municipal Education Commission [KM201910005035]

Ask authors/readers for more resources

The enhanced thermo-mechanical static and dynamic behaviors are investigated for the functionally graded graphene nanoplatelet reinforced aluminium-based (GRA) composite plate. The partial differential governing equations of motion for the static and dynamic analyses of the GRA composite plate are obtained based on the first-order shear deformation plate theory, von Karman nonlinear geometric relationship and Hamilton's principle. Numerical simulations are finished through using the differential quadrature (DQ) method and direct iterative process. Three different distribution patterns of the graphene nanoplatelets (GPLs) are considered, including the uniform distribution pattern, U pattern, and functionally graded (FG) patterns of X and O patterns. For the static analyses, the thermal buckling and post-buckling behaviors of the GRA composite plate subjected to the uniaxial or biaxial in-plane loads are discussed with varying the boundary conditions. For the dynamic behaviors, the thermal linear and nonlinear vibrations of the GRA composite plate are analyzed in details. The numerical results demonstrate that there are remarkable distinctions among the thermo-mechanical behaviors of the GRA composite plates with three different GPL distribution patterns. The present investigations are significant to the optimal design and practical applications of the GRA composite plate, especially in the thermal environment. (c) 2020 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available