4.8 Review

Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications

Journal

ADVANCED MATERIALS
Volume 33, Issue 3, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202004349

Keywords

cellulose nanocrystals; cellulose nanofibers; functional matter; nanocellulose; nanofibrillated cellulose

Funding

  1. NordForsk Nordic Center of Excellence project NordAqua [82845]
  2. ERC Advanced Grant DRIVEN

Ask authors/readers for more resources

Nanocelluloses have attracted significant attention in the pursuit of sustainable advanced functional materials. Despite facing challenges in mastering their interactions and tailorability, recent progress in water interactions and advanced hybrid gels has opened up new directions for potential applications like nanocomposites, gels, and composite fibers.
In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available