4.8 Review

Review on Li Deposition in Working Batteries: From Nucleation to Early Growth

Journal

ADVANCED MATERIALS
Volume 33, Issue 8, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202004128

Keywords

dendrite inhibition; lithium dendrite growth; lithium deposition; lithium metal batteries; nucleation

Funding

  1. National Natural Science Foundation of China [21776019, 21825501, U1801257]
  2. National Key Research and Development Program [2016YFA0202500, 2016YFA0200102]
  3. Tsinghua University Initiative Scientific Research Program

Ask authors/readers for more resources

Lithium metal as a promising alternative anode material for high-energy-density batteries is crucial in the new era of advanced energy storage. Understanding the deposition mechanism from nucleation to early growth is essential for improving battery performance and dendrite-free deposition behavior. Various models have been proposed to enhance the insight into the lithium deposition process, opening up new possibilities for practical lithium metal batteries.
Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li-SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode-design strategies, which contribute to better batteries with superior electrochemical performance and dendrite-free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal-based batteries involving the metal deposition process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available