4.8 Article

Ultrasensitive Magnetic Sensors Enabled by Heterogeneous Integration of Graphene Hall Elements and Silicon Processing Circuits

Journal

ACS NANO
Volume 14, Issue 12, Pages 17606-17614

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c08435

Keywords

Hall sensor; graphene; three-dimensional; heterogeneous integration; magnetic sensor

Funding

  1. National Key Research & Development Program [2016YFA0201901]
  2. National Science Foundation of China [61888102]
  3. Beijing Municipal Science and Technology Commission [D171100006617002 1-2]

Ask authors/readers for more resources

Graphene Hall elements (GHEs) have been demonstrated to be promising magnetic field sensors with excellent sensitivity, linearity, temperature stability, and compatibility with complementary-metal-oxide-semiconductor (CMOS)-integrated circuits (ICs). However, the demonstrated GHEs have still not exhibited a comprehensive advantage in performance over commercial integrated Hall sensors which were implemented in integrated Hall element and CMOS processing ICs. In this work, we develop a technology for the three-dimensional (3D) heterogeneous integration of silicon-based CMOS ICs and GHEs, and the fabricated magnetic field sensors outperform commercial high-end integrated Hall sensors. Specifically, the integrated Hall sensors are implemented in a stacked integration on Si based on a chopper programmable-gain amplifier (CPGA), a chopper-stabilized second-order sigma-delta modulator (CSDM), and graphene-based Hall elements on monochips. GHEs with high sensitivity (up to 1000 A/VT) are fabricated with a compatible process on a smoothened silicon nitride passivation layer of silicon-based CMOS ICs, and the two device layers are connected by an interlayer. The heterogeneous integrated Hall ICs exhibit current and voltage magnetic sensitivities up to 64 000 A/VT and 6.12 V/VT, respectively, which are much higher than those in all other reported nanomaterial-based Hall sensors and even in high-end commercial Hall ICs. Furthermore, the 3D heterogeneous integration technology used here can be extended as a universal technology for integrating nanomaterial-based sensors and Si CMOS ICs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available