4.8 Article

Intense Raman D Band without Disorder in Flattened Carbon Nanotubes

Journal

ACS NANO
Volume 15, Issue 1, Pages 596-603

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.0c06048

Keywords

Raman spectroscopy; collapsed carbon nanotubes; defects; Raman D band; carbon nanotubes; flattened carbon nanotubes

Ask authors/readers for more resources

Above a critical diameter, carbon nanotubes collapse into flattened forms, leading to unique Raman spectra changes. The presence of edge cavities and curvature changes near the edges activate a D band despite overall continuity in the structure. The differing perspectives of chemists and physicists on defects in carbon structures may lead to confusion for researchers in nanotechnologies.
Above a critical diameter, single- or few-walled carbon nanotubes spontaneously collapse as flattened carbon nanotubes. Raman spectra of isolated flattened and cylindrical carbon nanotubes have been recorded. The collapse provokes an intense and narrow D band, despite the absence of any lattice disorder. The curvature change near the edge cavities activates a D band, despite framework continuity. Theoretical calculations based on Placzek approximation fully corroborate this experimental finding. Usually used as a tool to quantify defect density in graphenic structures, the D band cannot be used as such in the presence of a graphene fold. This conclusion should serve as a basis to revisit materials comprising structural distortion where poor carbon organization was concluded on a Raman basis. Our finding also emphasizes the different visions of a defect between chemists and physicists, a possible source of confusion for researchers working in nanotechnologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available