4.8 Article

Accurately Engineering 2D/2D/0D Heterojunction In Hierarchical Ti3C2Tx MXene Nanoarchitectures for Electromagnetic Wave Absorption and Shielding

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 4, Pages 5866-5876

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c21833

Keywords

MXene; electromagnetic interference shielding; microwave absorption; multidimension heterojunction; dielectric polarization

Funding

  1. National Natural Science Foundation of China [51725101, 11727807, 51672050, 61790581]
  2. Ministry of Science and Technology of China [2018YFA0209102]

Ask authors/readers for more resources

The precise engineering of heterojunctions in MXene-based composites significantly enhances their electromagnetic wave absorption and shielding capabilities. By decorating Ti3C2Tx lamellas with coordination compounds and controlling their assembly into hierarchical microspheres, a new microstructure with excellent EM wave absorption and interference shielding performance is achieved. The 2D/2D/0D heterojunctions in the carbonized Ti3C2Tx/C/MoO2 microspheres can be tuned to regulate electric/dielectric properties, resulting in superior EM energy absorption and out-plane electron flowing.
The accurate heterojunction engineering in MXene-based composites unprecedentedly boosts their electromagnetic (EM) wave absorption and shielding performance. However, the flocculation of MXene caused by abundant termination groups severely restricts the regulation of heterojunction, which hankers for a revolutionary compositing strategy against unmanageable self-aggregation. Herein, electrically neutral coordination compound with large molecular volume is decorated on Ti3C2Tx lamellas to protect them from self-precipitation. A rapid polymerization reaction then controllably assembles them into a hierarchical microsphere composed of superlattice-like 2D/2D polymer/MXene building blocks. In the carbonized Ti3C2Tx/C/MoO2 microspheres, 2D/2D/0D heterojunctions can be precisely tuned to regulate electric/dielectric properties. These heterojunctions simultaneously trigger the intensive interfacial polarization and out-plane electron flowing to exhaust the EM energy as much as possible, confirmed by electron holography. Therefore, our products achieve the first-rate EM wave absorption with an ultrabroad absorption bandwidth of 7.7 GHz at the thickness of 2.5 mm. By altering the heterojunction, the composite acquires excellent EM interference shielding performance with an average shielding effectiveness of 35.9 dB. These accomplishments light a new way to microstructure construction and heterojunction design of MXene-based composites and lay out a profound insight into their EM wave absorption mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available