4.6 Review

Micro- and Nanoplastic Exposure Effects in Microalgae: A Meta-Analysis of Standard Growth Inhibition Tests

Journal

FRONTIERS IN ENVIRONMENTAL SCIENCE
Volume 8, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2020.00131

Keywords

metaanalysis; algal growth inhibition; hazard assessment; nanoplastics; microplastics; particulate matter; suspended solids

Funding

  1. Joint Programming Initiative Healthy and Productive Seas and Oceans (JPI Oceans, WEATHER-MIC project) [942-2015-1866]
  2. Swedish Innovation Agency (VINNOVA)
  3. joint Baltic Sea research and development programme (BONUS, Blue Baltic) for MICROPOLL project [2017-00979]
  4. Swedish Environmental Protection Agency (Naturvardsverket) [802-0160-18]
  5. Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) [2019-00388]
  6. Formas [2019-00388] Funding Source: Formas
  7. Forte [2019-00388] Funding Source: Forte

Ask authors/readers for more resources

Background:Ecological impacts of micro- and nanoplastics particles (MNP) are among the most discussed environmental concerns. In algae, MNP are commonly hypothesized to reduce growth, which is a standard ecotoxicological endpoint. However, the reported test outcomes vary, with both growth inhibition and stimulation being observed. Due to this conflict of information, a data synthesis for MNP potential to cause growth inhibition in toxicity testing is needed. Methods:We performed a meta-analysis study to assess the effect of MNP exposure on algal growth. Twenty studies published between 2010 and 2020 and representing 16 algal species and five polymer materials administered as particles in size range 0.04-3,000 mu m were included in this meta-analysis. A random-effect model was used to estimate the effect size in three datasets: (1)Low concentrationrange (<100 mg/L), (2)High concentrationrange (>= 100 mg/L), and (3)Full range model(0.004-1,100 mg/L), which encompassed all studies using the combination of experimental settings (test species, MNP concentration, polymer material, and particle size) yielding the highest effect size within a study. Results:The exposure to MNP was not significantly associated with growth inhibition in any of the models tested. However, a high heterogeneity between the studies was found in all three models. Neither MNP concentration nor polymer material contributed significantly to the heterogeneity, whereas polymer density had a significant moderating effect, with a higher risk of growth inhibition at lower densities. We also identified a publication bias, with small studies that reported significant inhibition being overrepresented in our dataset. Conclusions:The meta-analysis found limited evidence for MNP effect on microalgal growth in the standard algal growth inhibition test. The heterogeneity and varying methodological quality of studies limited the interpretation and the confidence in the findings. For hazard assessment, standardization and controlled exposure are needed as well as more sensitive endpoints that can inform us about the effect mechanisms. Finally, using particle-free controls in such tests cannot account for the presence of inert particulates in the test system, and, hence, does not allow to attribute observed effects to the test polymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available