4.6 Article

Modeling Optical Materials at the Single Scatterer Level: The Transition from Homogeneous to Heterogeneous Materials

Journal

ADVANCED THEORY AND SIMULATIONS
Volume 3, Issue 11, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adts.202000192

Keywords

effective medium theories; multiple scattering; nanocomposites; optical nanomaterials; refractive index

Funding

  1. European Union [675745]
  2. Karlsruhe School of Optics and Photonics (KSOP)
  3. Thuringian State Government within its ProExcellence initiative
  4. German Research Foundation [STA 1426/2-1, EXC 2082/1, 390761711, RO 3640/12-1, 413974664]
  5. German Federal Ministry of Education and Research (BMBF Forschungscampus MODAL) [05M20ZBM]

Ask authors/readers for more resources

Materials that contain distinct scatterers, for example, nanoparticles, with sizes exceeding 100 nm scatter light heavily and are heterogeneous. In contrast, the atomic or molecular scatterers in conventional optical materials form a homogeneous distribution on the scale of the wavelength. In this paper, the transition between homogeneous and heterogeneous materials is investigated. To this end, a procedure is introduced that allows for retrieving reliable refractive index values from full wave optical numerical simulations of the underlying multibody scattering problem. Using this procedure, it is shown that the concept of an effective refractive index breaks down on multiple levels as a material transitions out of the homogeneous regime. These findings allow for quantifying how novel dispersion-engineered nanocomposites for bulk optical applications must be designed and show that Maxwell-Garnett-type effective medium theories are accurate tools for the design of nanocomposites. The procedure can be readily generalized to other types of scatterers, including atoms and molecules and hence guide the design of different kinds of novel materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available