4.7 Article

Unsupervised Linear and Nonlinear Channel Equalization and Decoding Using Variational Autoencoders

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCCN.2020.2990773

Keywords

Blind equalizers; maximum likelihood estimation; deep learning; convolutional neural networks; belief propagation

Funding

  1. Israel Science Foundation [1868/18]
  2. Yitzhak and Chaya Weinstein Research Institute for Signal Processing

Ask authors/readers for more resources

A new approach for blind channel equalization and decoding, variational inference, and variational autoencoders (VAEs) in particular, is introduced. We first consider the reconstruction of uncoded data symbols transmitted over a noisy linear intersymbol interference (ISI) channel, with an unknown impulse response, without using pilot symbols. We derive an approximate maximum likelihood estimate to the channel parameters and reconstruct the transmitted data. We demonstrate significant and consistent improvements in the error rate of the reconstructed symbols, compared to existing blind equalization methods such as constant modulus, thus enabling faster channel acquisition. The VAE equalizer uses a convolutional neural network with a small number of free parameters. These results are extended to blind equalization over a noisy nonlinear ISI channel with unknown parameters. We then consider coded communication using low-density parity-check (LDPC) codes transmitted over a noisy linear or nonlinear ISI channel. The goal is to reconstruct the transmitted message from the channel observations corresponding to a transmitted codeword, without using pilot symbols. We demonstrate improvements compared to the expectation maximization (EM) algorithm using turbo equalization. Furthermore, unlike EM, the computational complexity of our method does not have exponential dependence on the size of the channel impulse response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available