4.7 Article

Triphenylamine-Polystyrene Blends for Perovskite Solar Cells with Simultaneous Energy Loss Suppression and Stability Improvement

Journal

SOLAR RRL
Volume 4, Issue 12, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/solr.202000490

Keywords

energy loss; perovskite solar cells; polystyrene; triphenylamine

Funding

  1. Hunan Provincial Science and Technology Department [2019GK2101]
  2. research fund for the central universities
  3. National Natural Science Foundation of China [51802355]
  4. Natural Science Foundation of Hunan Province [2018JJ3625]

Ask authors/readers for more resources

Energy loss induced by nonradiative recombinations plays a critical role in determining power conversion efficiencies in perovskite solar cells, whereas device stability impacts their long-time reliability in the ambient environment. It is an important challenge to suppress energy loss and improve device stability simultaneously. Herein, an interfacial layer of triphenylamine (TPA):polystyrene (PS) blend coated on the hybrid perovskite layer to concurrently suppress energy loss and improve device stability is reported. The energy loss is suppressed from 0.49 to 0.35 eV by passivating surface defects in hybrid perovskites via Lewis acid-base interactions with the combination of electron-donating aromatic nucleus in PS and tertiary amine in TPA, leading to perovskite solar cells with a high open-circuit voltage of 1.18 V, a fill factor of about 80%, and a power conversion efficiency of 22.1%. Meanwhile, the device stability in the ambient environment is improved significantly by the TPA:PS blend due to its superior hydrophobicity which is suggested by its high contact angle of 91.1 degrees as compared to 64.0 degrees for the pristine perovskite film. Herein, an efficient interfacial engineering approach with the TPA:PS blend to suppress energy loss and improve device stability simultaneously towards realistic applications is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available