4.7 Article

Evidencing Interfacial Charge Transfer in 2D CdS/2D MXene Schottky Heterojunctions toward High-Efficiency Photocatalytic Hydrogen Production

Journal

SOLAR RRL
Volume 5, Issue 2, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/solr.202000414

Keywords

charge transfers; density functional theory calculations; MXene; photocatalytic hydrogen production; Schottky heterojunctions

Funding

  1. National Natural Science Foundation of China [21975129, 51702074]
  2. Natural Science Foundation of Jiangsu Province [BK20171299]
  3. Nanjing Forestry University

Ask authors/readers for more resources

Photocatalytic water splitting using 2D CdS/2D MXene Schottky heterojunctions achieves efficient and robust hydrogen-evolving performance, with intimate Schottky contact facilitating charge migration and suppressing charge recombination.
Photocatalytic water splitting by heterojunction nanostructures is considered as one of the most favorable pathways for direct solar-to-hydrogen conversion. High-efficiency solar hydrogen production demands an effective separation of charge carriers and their rapid transport to the interface, whereas the charge-transfer pathway in heterojunction photocatalysts is largely elusive. Herein, 2D CdS/2D MXene Schottky heterojunctions are synthesized via a sequence of electrostatic self-assembly process and solvothermal method. The composite photocatalysts exhibit highly efficient and robust hydrogen-evolving performance, far superior than the pristine CdS nanosheets. Furthermore, density functional theory (DFT) calculations are adopted to unveil the charge-transport pathway. It is revealed that an intimate Schottky contact is constructed between CdS and MXene, which further steers the formation of charge flow and expedites the charge migration from CdS to MXene, thus suppressing the recombination of photogenerated charge carriers and boosting the photocatalytic activity for hydrogen evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available