4.7 Article

SPH Simulations of Real Sea Waves Impacting a Large-Scale Structure

Journal

Publisher

MDPI
DOI: 10.3390/jmse8100826

Keywords

fluid-structure interaction; waves; smoothed particle hydrodynamics; SPH; Pont del Petroli; storm Gloria

Funding

  1. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant [792370]
  2. Marie Curie Actions (MSCA) [792370] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

The Pont del Petroli is a dismissed pier in the area of Badalona, Spain, with high historical and social value. This structure was heavily damaged in January 2020 during the storm Gloria that hit southeastern Spain with remarkable strength. The reconstruction of the pier requires the assessment and characterization of the wave loading that determined the structural failure. Therefore, a state-of-the-art Computational Fluid Dynamic (CFD) code was employed herein as an aid for a planned experimental campaign that will be carried out at the Maritime Engineering Laboratory of Universitat Politecnica de Catalunya-BarcelonaTech (LIM/UPC). The numerical model is based on Smoothed Particle Hydrodynamics (SPH) and has been employed to simulate conditions very similar to those that manifested during the storm Gloria. The high computational cost for a full 3-D simulation has been alleviated by means of inlet boundary conditions, allowing wave generation very close to the structure. Numerical results reveal forces higher than the design loads of the pier, including both self-weight and accidental loads. This demonstrates that the main failure mechanism that led to severe structural damage of the pier during the storm is related to the exceeded lateral soil resistance. To the best of the authors' knowledge, this research represents the first known application of SPH open boundary conditions to model a real-world engineering case.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available