4.5 Article

Determination of biaxial stress-strain curves for superplastic materials by means of bulge forming tests at constant stress

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.cirpj.2020.09.002

Keywords

Material characterization; Superplastic forming; Constitutive behavior; Biaxial tension; Alnovi-U

Funding

  1. Basic Research Program at the National Research University Higher School of Economics (HSE)

Ask authors/readers for more resources

As the characterization of superplastic materials requires elevated temperatures and strain rate control, standard bulge testing procedure with optical measuring systems is not feasible for the determination of biaxial stress-strain curves. Standard superplastic bulge forming tests performed at constant pressure can be used for the identification of material constants or formability evaluation, but they are not applicable for accurate characterization of deformation behavior providing stress-strain curves at constant strain rates. The present paper is aimed to provide a technique for the direct characterization of stress-strain behavior of superplastic materials in conditions of biaxial tension. This technique is based on bulge forming testing with a closed-loop pressure control procedure allowing one to maintain the value of the effective stress at the dome pole at the predefined constant level. Thus, the variation of strain rate is reduced compared to the constant pressure testing. The results are evaluated using a double-step numerical procedure which provides the way to calculate the stress-strain curves, corresponding to constant referenced strain rates. The developed technique was used to characterize superplastic aluminum alloy Alnovi-U in conditions of biaxial tension at 500 degrees C. (C) 2020 CIRP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available