4.6 Article

Design, Synthesis, and Biological Activity of Conformationally Restricted Analogues of Silibinin

Journal

ACS OMEGA
Volume 5, Issue 36, Pages 23164-23174

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c02936

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan [18K06588, 20K15486]
  2. Grants-in-Aid for Scientific Research [18K06588, 20K15486] Funding Source: KAKEN

Ask authors/readers for more resources

Silibinin (Sib), one of the main components of milk thistle extract, has attracted considerable attention because of its various biological activities, which include antioxidant activity and potential effects in diabetes and Alzheimer's disease (AD). In a previous study, we synthesized catechin analogues by constraining the geometries of (+)-catechin and (-)-epicatechin. The constrained analogues exhibited enhanced bioactivities, with the only major difference between the two being their three-dimensional structures. The constrained geometry in (+)-catechin resulted in a high degree of planarity (PCat), while (-)-epicatechin failed to maintain planarity (PEC). The three-dimensional structure of Sib may be related to its ability to inhibit aggregation of amyloid beta (A beta). We therefore introduced PCat and PEC into Sib to demonstrate how the constrained molecular geometry and differences in three-dimensional structures may enhance such activities. Introduction of PCat into Sib (SibC) resulted in effective inhibition of A beta aggregation, alpha-glucosidase activity, and cell growth, suggesting that not only reduced flexibility but also the high degree of planarity may enhance the biological activity. SibC is expected to be a promising lead compound for the treatment of several diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available