4.7 Article

Application of a High-Throughput Amplicon Sequencing Method to Chart the Bacterial Communities that Are Associated with European Fermented Meats from Different Origins

Journal

FOODS
Volume 9, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/foods9091247

Keywords

staphylococci; lactic acid bacteria; fermented meats; high-throughput sequencing; microbiota

Funding

  1. Research Council of the Vrije Universiteit Brussel (OZR)
  2. Research Council of the Vrije Universiteit Brussel (SRP)
  3. Research Council of the Vrije Universiteit Brussel (IRP)
  4. Research Council of the Vrije Universiteit Brussel (HOA)
  5. Research Council of the Vrije Universiteit Brussel (IOF)
  6. Hercules Foundation [UABR 09/004, UAB13002]
  7. Research Foundation-Flanders [G021518N]
  8. SB Fellowship of the FWO [1S06717N]

Ask authors/readers for more resources

Insight into the microbial species diversity of fermented meats is not only paramount to gain control over quality development, but also to better understand the link with processing technology and geographical origin. To study the composition of the microbial communities, the use of culture-independent methods is increasingly popular but often still suffers from drawbacks, such as a limited taxonomic resolution. This study aimed to apply a previously developed high-throughput amplicon sequencing (HTS) method targeting the 16S rRNA andtufgenes to characterize the bacterial communities in European fermented meats in greater detail. The data obtained broadened the view on the microbial communities that were associated with the various products examined, revealing the presence of previously underreported subdominant species. Moreover, the composition of these communities could be linked to the specificities of individual products, in particular pH, salt content, and geographical origin. In contrast, no clear links were found between the volatile organic compound profiles of the different products and the country of origin, distinct processing conditions, or microbial communities. Future application of the HTS method offers the potential to further unravel complex microbial communities in fermented meats, as well as to assess the impact of different processing conditions on microbial consortia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available