4.7 Article

A novel optimal configuration model for a zero-carbon multi-energy system (ZC-MES) integrated with financial constraints

Journal

SUSTAINABLE ENERGY GRIDS & NETWORKS
Volume 23, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.segan.2020.100381

Keywords

Multi-energy system; Zero-carbon; Financial constraint; Energy sector; Renewable energy

Funding

  1. Natural Science Foundation of China [61873118]
  2. Shenzhen Committee on Science and Innovations [GJHZ20180411143603361]
  3. Department of Science and Technology of Guangdong Province [2018A050506003]

Ask authors/readers for more resources

The concept of Multi-Energy System (MES) has been identified as a succinct approach in minimizing the economic implications, reducing environmental hazards, and increasing the efficiency of an integrated energy infrastructure holistically. Nevertheless, whilst a great number of resources have been invested in achieving low carbon energy communities and energy infrastructure, limited research has been conducted towards the realization of zero-carbon (ZC) MES. In line with this, this paper developed a novel mathematical model for the optimal configuration of ZC-MES integrated with financial constraints. To achieve this aim, a novel mean-max approach is proposed in this study for the selection of the representative hourly data from the pool of available datasets. Next, mixed-integer linear programming (MILP) is formulated to describe the whole system, with the inclusion of new replacement cost formulation and financial constraints. The proposed approach is then verified using a developed residential district area in Hong Kong that was modeled using TRNSYS software as a case study under different scenarios. The simulation results show that the optimal investment cost obtained by the conventional approach can be further reduced by 2.90% through rational equipment configuration without violating the applicable constraints, while a financing rate of 5% and 10% on the additional funds under breakable constraint are of economic benefits to the investors. Hereupon, this paper provides a useful reference resource for energy planners, decision-makers, and academic researchers, on the feasibility of zero-emission in the energy sector and other related fields. (c) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available