4.6 Article

Kinetics of Nucleo- and Spike Protein-Specific Immunoglobulin G and of Virus-Neutralizing Antibodies after SARS-CoV-2 Infection

Journal

MICROORGANISMS
Volume 8, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/microorganisms8101572

Keywords

COVID-19; humoral immunity; test performance; neutralization; follow-up; titer decrease

Categories

Funding

  1. DFG

Ask authors/readers for more resources

Kinetics of neutralizing antibodies and immunoglobulin G (IgG) against the nucleo (N) or spike (S) proteins of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) were studied in patients up to 165 days after PCR diagnosis of infection. Two immunoassays were selected out of eight IgG or total antibody tests by comparing their specificities and sensitivities. Sensitivities were calculated with convalescent sera from 26 PCR-confirmed cases, of which 76.9% had neutralizing antibodies (>1:10). Stored sera collected during the summer 2018 (N = 50) and winter seasons 2018/2019 (N = 50) were included to demonstrate the test specificities. IgG kinetics, avidities, and virus-neutralizing capacities were recorded over up to 165 days in eleven patients and five individuals from routine diagnostics. Sensitivities, specificities, and diagnostic accuracies ranged between 80.8-96.3%, 96.0-100%, and 93.7-99.2%, respectively. Nearly all results were confirmed with two different SARS-CoV-2-specific immunoblots. Six (54.4%) patients exhibited stable N-specific IgG indices over 120 days and longer; three of them developed IgG of high avidity. The S-specific IgG response was stable in ten (91.0%) patients, and eight (72.7%) had neutralizing antibodies. However, the titers were relatively low, suggesting that sustained humoral immunity is uncertain, especially after outpatient SARS-CoV-2 infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available