4.6 Article

Understanding High-Salt and Cold Adaptation of a Polyextremophilic Enzyme

Journal

MICROORGANISMS
Volume 8, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/microorganisms8101594

Keywords

extremophiles; halophiles; psychrophiles; polyextremophiles; extremozymes; X-ray crystallography; molecular dynamics simulations

Categories

Funding

  1. King Abdullah University of Science and Technology (KAUST) through the baseline fund [URF/1/1976-21]
  2. O ffice of Sponsored Research (OSR)

Ask authors/readers for more resources

The haloarchaeon Halorubrum lacusprofundi is among the few polyextremophilic organisms capable of surviving in one of the most extreme aquatic environments on Earth, the Deep Lake of Antarctica (-18 degrees C to +11.5 degrees C and 21-28%, w/v salt content). Hence, H. lacusprofundi has been proposed as a model for biotechnology and astrobiology to investigate potential life beyond Earth. To understand the mechanisms that allow proteins to adapt to both salinity and cold, we structurally (including X-ray crystallography and molecular dynamics simulations) and functionally characterized the beta-galactosidase from H. lacusprofundi (hla_bga). Recombinant hla_bga (produced in Haloferax volcanii) revealed exceptional stability, tolerating up to 4 M NaCl and up to 20% (v/v) of organic solvents. Despite being cold-adapted, hla_bga was also stable up to 60 degrees C. Structural analysis showed that hla_bga combined increased surface acidity (associated with halophily) with increased structural flexibility, fine-tuned on a residue level, for sustaining activity at low temperatures. The resulting blend enhanced structural flexibility at low temperatures but also limited protein movements at higher temperatures relative to mesophilic homologs. Collectively, these observations help in understanding the molecular basis of a dual psychrophilic and halophilic adaptation and suggest that such enzymes may be intrinsically stable and functional over an exceptionally large temperature range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available