4.7 Article

A Red Fluorescent Protein-Based Probe for Detection of Intracellular Reactive Sulfane Sulfur

Journal

ANTIOXIDANTS
Volume 9, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/antiox9100985

Keywords

sulfane sulfur; antioxidation; mCherry; mitochondria; Saccharomyces cerevisiae

Funding

  1. National Key Research and Development Program of China [2018YFA0901200, 2016YFA0601103, 91951202]

Ask authors/readers for more resources

Reactive sulfane sulfur, including persulfide and polysulfide, is a type of regular cellular component, playing an antioxidant role. Its function may be organelle-dependent; however, the shortage of probes for detecting organellar reactive sulfane sulfur has hindered further investigation. Herein, we reported a red fluorescent protein (mCherry)-based probe for specifically detecting intracellular reactive sulfane sulfur. By mutating two amino acid residues of mCherry (A150 and S151) to cysteine residues, we constructed a mCherry mutant, which reacted with reactive sulfane sulfur to form an intramolecular -S-n- bond (n >= 3). The bond largely decreased the intensity of 610 nm emission (excitation at 587 nm) and slightly increased the intensity of 466 nm emission (excitation at 406 nm). The 466/610 nm emission ratio was used to indicate the relative abundance of reactive sulfane sulfur. We then expressed this mutant in the cytoplasm and mitochondria of Saccharomyces cerevisiae. The 466/610 nm emission ratio revealed that mitochondria had a higher level of reactive sulfane sulfur than cytoplasm. Thus, the mCherry mutant can be used as a specific probe for detecting reactive sulfane sulfur in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available