4.6 Article

A sensitive bacterial-growth-based test reveals how intestinal Bacteroides meet their porphyrin requirement

Journal

BMC MICROBIOLOGY
Volume 15, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12866-015-0616-0

Keywords

Heme auxotroph; Protoporphyrin IX; Metabolites; Germfree; Diagnostics; Microbiota

Categories

Funding

  1. French National Research Agency [ANR-11-IDEX-0003-02]
  2. ALIAS project

Ask authors/readers for more resources

Background: Bacteroides sp. are dominant constituents of the human and animal intestinal microbiota require porphyrins (i.e., protoporphyrin IX or iron-charged heme) for normal growth. The highly stimulatory effect of porphyrins on Bacteroides growth lead us to propose their use as a potential determinant of bacterial colonization. However, showing a role for porphryins would require sensitive detection methods that work in complex samples such as feces. Results: We devised a highly sensitive semi-quantitative porphyrin detection method (detection limit 1-4 ng heme or PPIX) that can be used to assay pure or complex biological samples, based on Bacteroides growth stimulation. The test revealed that healthy colonized or non-colonized murine and human hosts provide porphyrins in feces, which stimulate Bacteroides growth. In addition, a common microbiota constituent, Escherichia coli, is shown to be a porphyrin donor, suggesting a novel basis for intestinal bacterial interactions. Conclusions: A highly sensitive method to detect porphyrins based on bacterial growth is devised and is functional in complex biological samples. Host feces, independently of their microbiota, and E. coli, which are present in the intestine, are shown to be porphryin donors. The role of porphyrins as key bioactive molecules can now be assessed for their impact on Bacteroides and other bacterial populations in the gut.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available