4.8 Article

2D auxetic metamaterials with tuneable micro-/nanoscale apertures

Journal

APPLIED MATERIALS TODAY
Volume 20, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apmt.2020.100780

Keywords

Mechanical metamaterials; Focused-Ion-Beam milling; Auxetic; Nanoarchitectures; Perforated systems; Nano-pores

Funding

  1. Royal Society [2017 CSC\R1\ 170018]

Ask authors/readers for more resources

Modern advanced manufacturing technologies have made possible the tailored design and fabrication of complex nanoscale architectures with anomalous and enhanced properties, including mechanical and optical metamaterials; structured materials which are able to exhibit unusual mechanical and optical properties that are derived from their geometry rather than their intrinsic material properties. In this work, we fabricated for the first time an ultrathin 2D auxetic metamaterial with nanoscale geometric features specifically designed to deform in-plane by using focused-ion-beam milling to introduce patterned nano-slits within a thin membrane. The system was mechanically loaded in-situ and exhibited in-plane dominated deformation up to 5% tensile strain and a Poisson's ratio of -0.78. Furthermore, the porosity and aperture shape of the metamaterial have been shown to change considerably upon the application of strain, with pore dimensions showing a fourfold increase at 5% strain. This mechanically-controlled tuneability makes this metamaterial system an ideal candidate for use as a reconfigurable nano-filter or a nano light-modulator. (c) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available