4.7 Article

Beneficial Effects of Biochar-Based Organic Fertilizer on Nitrogen Assimilation, Antioxidant Capacities, and Photosynthesis of Sugar Beet (Beta vulgaris L.) under Saline-Alkaline Stress

Journal

AGRONOMY-BASEL
Volume 10, Issue 10, Pages -

Publisher

MDPI
DOI: 10.3390/agronomy10101562

Keywords

sugar beet; saline-alkaline stress; biochar-based organic fertilizer; nitrogen assimilation; antioxidant enzymes; root activity; photosynthesis; yield and sugar content

Funding

  1. National Natural Science Foundation of China [31671622]
  2. China Agriculture Research System [CARS-170201]

Ask authors/readers for more resources

The Songnen Plain, whose climatic conditions are perfectly suited to sugar beet growth, is located in northeastern China. Unfortunately, this region has a lot of saline-alkaline land, which is the most important factor limiting sugar beet production. This study was undertaken to determine whether biochar-based organic fertilizer could alleviate the negative effect of saline-alkaline soil on sugar beet yield and whether such an effect correlated with changes in nitrogen assimilation, antioxidant system, root activity, and photosynthesis. Three treatments were established: Chemical fertilizers were applied to neutral soil (CK), chemical fertilizers were applied to saline-alkaline soil (SA), and biochar-based organic fertilizer was applied to saline-alkaline soil (SA + B). Our results showed that saline-alkaline stress significantly inhibited the nitrogen assimilation and antioxidant enzymes activities in root, root activity, and photosynthesis, thus significantly reducing the yield and sugar content of sugar beet. Under saline-alkaline conditions, the application of biochar-based organic fertilizer improved the activities of nitrogen assimilation enzymes in the root; at the same time, the antioxidant enzymes activities of the root were significantly increased for improving root activity in this treatment. Moreover, the application of biochar-based organic fertilizer could improve the synthesis of photosynthetic pigments, PSII (Photosystem II) activity, stomatal opening, and photosynthesis of sugar beet under saline-alkaline conditions. Hence, the growth and yield of sugar beet were improved by applying biochar-based organic fertilizer to saline-alkaline soil. These results proved the significance of biochar-based organic fertilizer in alleviating the negative effect of saline-alkaline stress on sugar beet. The results obtained in the pot experiment may not be viable in field conditions. Therefore, in the future, we will verify whether biochar-based organic fertilizer could alleviate the adverse effects of saline-alkaline stress on sugar beets yield under field conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available