4.6 Article

Actuator and Sensor Fault Classification for Wind Turbine Systems Based on Fast Fourier Transform and Uncorrelated Multi-Linear Principal Component Analysis Techniques

Journal

PROCESSES
Volume 8, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/pr8091066

Keywords

fault diagnosis; fault classification; fast Fourier transform (FFT); multi-linear principal component analysis (MPCA); uncorrelated multi-linear principal component analysis (UMPCA); additive white Gaussian noises (AWGN); wind turbine systems

Funding

  1. National Nature Science Foundation of China (NNSFC) [61673074]
  2. Alexander von Humboldt Foundation [GRO/1117303 STP]

Ask authors/readers for more resources

In response to the high demand of the operation reliability and predictive maintenance, health monitoring and fault diagnosis and classification have been paramount for complex industrial systems (e.g., wind turbine energy systems). In this study, data-driven fault diagnosis and fault classification strategies are addressed for wind turbine energy systems under various faulty scenarios. A novel algorithm is addressed by integrating fast Fourier transform and uncorrelated multi-linear principal component analysis techniques in order to achieve effective three-dimensional space visualization for fault diagnosis and classification under a variety of actuator and sensor faulty scenarios in 4.8 MW wind turbine benchmark systems. Moreover, comparison studies are implemented by using multi-linear principal component analysis with and without fast Fourier transform, and uncorrelated multi-linear principal component analysis with and without fast Fourier transformation data pre-processing, respectively. The effectiveness of the proposed algorithm is demonstrated and validated via the wind turbine benchmark.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available