4.6 Article Proceedings Paper

Physics-Guided Deep Learning for Drag Force Prediction in Dense Fluid-Particulate Systems

Journal

BIG DATA
Volume 8, Issue 5, Pages 431-449

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/big.2020.0071

Keywords

data mining; machine learning; physics-guided learning; computational fluid dynamics

Funding

  1. National Science Foundation [DGE-1545362, IIS-1633363]

Ask authors/readers for more resources

Physics-based simulations are often used to model and understand complex physical systems in domains such as fluid dynamics. Such simulations, although used frequently, often suffer from inaccurate or incomplete representations either due to their high computational costs or due to lack of complete physical knowledge of the system. In such situations, it is useful to employ machine learning (ML) to fill the gap by learning a model of the complex physical process directly from simulation data. However, as data generation through simulations is costly, we need to develop models being cognizant of data paucity issues. In such scenarios, it is helpful if the rich physical knowledge of the application domain is incorporated in the architectural design of ML models. We can also use information from physics-based simulations to guide the learning process using aggregate supervision to favorably constrain the learning process. In this article, we propose PhyNet, a deep learning model using physics-guided structural priors and physics-guided aggregate supervision for modeling the drag forces acting on each particle in a computational fluid dynamics-discrete element method. We conduct extensive experiments in the context of drag force prediction and showcase the usefulness of including physics knowledge in our deep learning formulation. PhyNet has been compared with several state-of-the-art models and achieves a significant performance improvement of 7.09% on average. The source code has been made available*.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available