3.8 Article

Fabrication of Chitosan-Reinforced Multifunctional Graphene Nanocomposite as Antibacterial Scaffolds for Hemorrhage Control and Wound-Healing Application

Journal

ACS BIOMATERIALS SCIENCE & ENGINEERING
Volume 6, Issue 10, Pages 5911-5929

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.0c00923

Keywords

biomaterial; graphene nanobiocomposite; antimicrobial scaffolds; hemorrhage control; wound healing

Funding

  1. DST-INSPIRE
  2. CSIR-SRF fellowship, Government of India
  3. SERB [CRG/2018/002307]

Ask authors/readers for more resources

Accidents on battlefields and roads often lead to hemorrhage and uncontrolled bleeding. Hence, immediate hemorrhage control remains of great importance to reduce mortality and socioeconomic loss. Herein, nanobiocomposite scaffolds (film and sponge) have been fabricated for the first time through the incorporation of a graphene-silver-polycationic peptide (GAP) nanocomposite into chitosan (Cs). Ten different scaffolds viz. Cs, Cs-GAP2S, Cs-GAPS0, Cs-GAP75, and Cs-GAP100 were prepared in the form of films and sponges. Cs-GAP100 nanobiocomposite sponge exhibited excellent porosity, fluid absorption, and blood clotting capacity, whereas Cs-GAP100 nanobiocomposite film showed excellent mechanical strength and poor degradation property. The presence of graphene in GAP provided a unique mechanical property and prevented the natural degradation, whereas silver nanoparticles and polycationic peptide provided an efficient antimicrobial property to the scaffolds. The high surface area of graphene and the hydrophilic nature of the polycationic peptide also imparted high fluid and blood absorption capacity to Cs-GAP nanobiocomposite scaffolds. The in vitro whole blood clotting assay demonstrated that clotting efficacy improved with the concentration of GAP nanocomposite and Cs-GAP100 nanobiocomposite sponge significantly (p value <0.003) reduced the clotting time to 60 s, as compared to the pristine chitosan dressings. On the other side, the Cs-GAP100 nanobiocomposite film showed an excellent wound-healing property. The Cs-GAP100 nanobiocomposite demonstrated profound antibacterial activity against Escherichia coli and Staphylococcus aureus. The intracellular reactive oxygen species (ROS) assay explained the interfacial interaction of Cs-GAP100 nanobiocomposite and bacterial cells, resulting in cell damage and finally cell death. The obtained information thus provided a novel safe-by-design concept for fabrication of Cs-GAP100 nanobiocomposite scaffolds and demonstrated potential development of antibacterial hemostatic and wound dressing in traumacare management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available