4.5 Article

Dimensional Crossover and Enhanced Thermoelectric Efficiency Due to Broken Symmetry in Graphene Antidot Lattices

Journal

PHYSICAL REVIEW APPLIED
Volume 14, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.14.024075

Keywords

-

Funding

  1. Flag-Era JTC 2017 project 'MECHANIC' - TUBITAK [117F480]

Ask authors/readers for more resources

Graphene antidot lattices (GALs) are two-dimensional (2D) monolayers with periodically placed holes in otherwise pristine graphene. We investigate the electronic properties of symmetric and asymmetric GAL structures having hexagonal holes, and show that anisotropic 2D GALs can display a dimensional crossover such that effectively one-dimensional (1D) electronic structures can be realized in two dimen-sions around the charge neutrality point. We investigate the transport and thermoelectric properties of these 2D GALs by using the nonequilibrium Green function method. Dimensional crossover manifests itself as transmission plateaus, a characteristic feature of 1D systems, and enhancement of thermoelec-tric efficiency, where thermoelectric figure of merit, zT, can be as high as 0.9 at room temperature. We also study the transport properties in the presence of Anderson disorder and find that mean free paths of effectively 1D electrons of anisotropic configuration are much longer than their isotropic counterparts. We further argue that dimensional crossover due to broken symmetry and enhancement of thermoelectric efficiency can be nanostructuring strategy virtually for all 2D materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available