4.6 Article

Structure and expression analysis of seven salt-related ERF genes of Populus

Journal

PEERJ
Volume 8, Issue -, Pages -

Publisher

PEERJ INC
DOI: 10.7717/peerj.10206

Keywords

ERF; Transcription factor; Salt stress; Gene express; Populus

Funding

  1. National Natural Science Foundation of China [31800564]
  2. University Science and Technology Innovation Project of Shanxi Province [2019L0392]
  3. Excellent Doctoral Program of Shanxi Province [SXYBKY201727]
  4. Funding for Doctoral Research of Shanxi Agricultural University [2017YJ21]

Ask authors/readers for more resources

Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven ERF genes related to abiotic stress tolerance and response were identified in plants of the Populus genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven ERF genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven ERF genes showed that they have multiple stress-related motifs and cis-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these ERFs determined by GO annotation supported this hypothesis. In addition, the spatiotemporal expression pattern of these seven ERFs, as detected using RT-qPCR and RNAseq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in Populus abiotic stress tolerance and development process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available