4.6 Article

Genome-wide identification of Hsp70/110 genes in rainbow trout and their regulated expression in response to heat stress

Journal

PEERJ
Volume 8, Issue -, Pages -

Publisher

PEERJ INC
DOI: 10.7717/peerj.10022

Keywords

Rainbow trout; Gene expression pattern; Heat stress; Hsp70/110 gene

Funding

  1. Science and Technology Support Plan Project of Tianshui [2018-FZJHK-2582]

Ask authors/readers for more resources

Heat shock proteins (Hsps) play an important role in many biological processes. However, as a typical cold water fish, the systematic identification of Hsp70/110 gene family of rainbow trout (Oncorhynchus mykiss) has not been reported, and the role of Hsp70/110 gene in the evolution of rainbow trout has not been described systematically. In this study, bioinformatics methods were used to analyze the Hsp70/110 gene family of rainbow trout. A total of 16 hsp70/110 genes were identified and classified into ten subgroups. The 16 Hsp70/110 genes were all distributed on chromosomes 2, 4, 8 and 13. The molecular weight is ranged from 78.93 to 91.39 kD. Gene structure and motif composition are relatively conserved in each subgroup. According to RNA-seq analysis of rainbow trout liver and head kidney, a total of four out of 16 genes were significantly upregulated in liver under heat stress, and a total of seven out of 16 genes were significantly upregulated in head kidney. RT-qPCR was carried out on these gene, and the result were consistent with those of RNA-seq. The significantly regulated expressions of Hsp70/110 genes under heat stress indicats that Hsp70/110 genes are involved in heat stress response in rainbow trout. This systematic analysis provided valuable information about the diverse roles of Hsp70/110 in the evolution of teleost, which will contribute to the functional characterization of Hsp70/110 genes in further research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available