4.7 Article

Short-Term Memory Dynamics of TiN/Ti/TiO2/SiOx/Si Resistive Random Access Memory

Journal

NANOMATERIALS
Volume 10, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/nano10091821

Keywords

memristor; synapse device; neuromorphic computing; short-term memory; titanium dioxide

Funding

  1. National Research Foundation of Korea (NRF) - Korean government (MSIP) [2018R1C1B5046454]

Ask authors/readers for more resources

In this study, we investigated the synaptic functions of TiN/Ti/TiO2/SiOx/Si resistive random access memory for a neuromorphic computing system that can act as a substitute for the von-Neumann computing architecture. To process the data efficiently, it is necessary to coordinate the information that needs to be processed with short-term memory. In neural networks, short-term memory can play the role of retaining the response on temporary spikes for information filtering. In this study, the proposed complementary metal-oxide-semiconductor (CMOS)-compatible synaptic device mimics the potentiation and depression with varying pulse conditions similar to biological synapses in the nervous system. Short-term memory dynamics are demonstrated through pulse modulation at a set pulse voltage of -3.5 V and pulse width of 10 ms and paired-pulsed facilitation. Moreover, spike-timing-dependent plasticity with the change in synaptic weight is performed by the time difference between the pre- and postsynaptic neurons. The SiO(x)layer as a tunnel barrier on a Si substrate provides highly nonlinear current-voltage (I-V) characteristics in a low-resistance state, which is suitable for high-density synapse arrays. The results herein presented confirm the viability of implementing a CMOS-compatible neuromorphic chip.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available