4.5 Article

Study on the Effect of Powder-Bed Fusion Process Parameters on the Quality of as-Built IN718 Parts Using Response Surface Methodology

Journal

METALS
Volume 10, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/met10091180

Keywords

selective laser melting; Inconel 718; process parameters; response surface methodology; design of experiment

Funding

  1. University of Texas System STARs award

Ask authors/readers for more resources

Inconel 718 (IN718) is a nickel-based superalloy which is widely used in aerospace, oil, and gas industries due to its outstanding mechanical properties at high temperatures, corrosion, fatigue resistance, and excellent weldability. Selective laser melting (SLM), one of the most used powder-bed based methods, is being extensively used to fabricate functional IN718 components with high accuracy. The accuracy and the properties of the SLM fabricated IN718 parts highly depend on the process parameters employed during fabrication. Thus, depending on the desired properties, the process parameters for a given material need to be optimized for improving the overall reliability of the SLM devices. In this study, design of experiment (DOE) was used to evaluate the dimensional accuracy, composition, and hardness corresponding to the interaction between the SLM process parameters such as laser power (P), scan speed (v), and hatch spacing (h). Contour plots were generated by co-relating the determined values for each characteristic and the process parameters to improve the as-built characteristics of the fabricated IN718 parts and reduce the post-processing time. The outcome of this study shows a range of energy density values for the IN718 superalloy needed to attain optimal values for each of the analyzed characteristics. Finally, an optimal processing region for SLM IN718 fabrication was identified which is in accordance with the values for each characteristic mentioned in literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available