4.1 Article

New insights towards disinfecting viruses - short notes

Journal

JOURNAL OF WATER REUSE AND DESALINATION
Volume 10, Issue 3, Pages 173-186

Publisher

IWA PUBLISHING
DOI: 10.2166/wrd.2020.050

Keywords

activated carbon adsorption (ACA); disinfecting viruses; membrane filtration; nanoparticles; solar disinfection (SODIS)

Funding

  1. Research Deanship of University of Ha'il, Saudi Arabia [RG-191190]

Ask authors/readers for more resources

Water treatment specialists need more and more to understand how viruses behave in potable water pipes and wastewater setups. This work discusses the late advances in dealing with viruses present in water treatment processes. Activated carbon adsorption (ACA) remains one of the most efficient and credible physicochemical methods. Nanoparticles have been utilized to turn activated carbon into a more efficient sorbent. Membrane filtration could lead to total elimination of viruses and ensure the safety of drinking water plants. As a feasible utilization for disinfecting potable water, solar disinfection (SODIS) remains a green and cost-efficient technology with its optical and thermal pathways and deserves more interest in its large and industrial implementation. Identically, solar distillation remains a viable solution for disinfecting and treating water. The water treatment techniques that are currently utilized for surface water treatment are appropriate for eliminating viruses like influenza A viruses, as proved by the literature. More strict precautions have to be taken to secure viruses' total elimination from water and wastewater as for influenza A and H5N1 in terms of advanced oxidation processes, ACA, and membrane processes application. Before reaching surface water, pathogens have to be removed efficiently from hospital and municipal wastewaters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available