4.3 Article

Parameter Sensitivities of the Community Land Model at Two Alpine Sites in the Three-River Source Region

Journal

JOURNAL OF METEOROLOGICAL RESEARCH
Volume 34, Issue 4, Pages 851-864

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13351-020-9205-8

Keywords

parameter sensitivities; Community Land Model (CLM); three-river source region

Funding

  1. Strategic Priority Research Program of Chinese Academy of Sciences [XDA20050102]
  2. National Natural Science Foundation of China [41975135, 41975130]

Ask authors/readers for more resources

The three-river source region plays an important role on China's ecological security and Asia's water supply. Historically, the region has experienced severe ecological degradation due to climate change and human activities. Reasonable simulations of the energy and water cycles are essential to predict the responses of land surface processes to future climate change. Current land surface models involve empirical functions that are associated with many parameters. These parameter uncertainties will largely affect the simulation when applied to a new domain. The Community Land Model (CLM) is a widely used land surface model, and version 5.0 is the newest version. Compared to the prior version CLM4.5, CLM5.0 has largely updated plant hydraulic and stomatal conductance schemes. How these changes affect parameter sensitivities is unknown. In our work, we tested 17 key parameters in CLM4.5 and 19 parameters in CLM5.0 at two eddy flux sites in the three-river source region: the Maqu and Maduo sites. We adopted the simplest one-at-a-time changes on each parameter and quantified their sensitivities by the parameter effect (PE). We found that the Maqu site was more sensitive to vegetation parameters, while the Maduo site was more sensitive to the initial soil water content in both CLM4.5 and CLM5.0. This is because Maduo grid cell has wetland that does not respond to vegetation parameters in CLM, which may not reflect the reality. Further model development on wetland vegetation parameterization is important. Our validation on the default simulation showed CLM5.0 did not always improve the simulations. The largest difference between CLM5.0 and CLM4.5 was that soil moisture (SM) showed a much stronger decrease in response to a higher leaf area index (LAI) in CLM5.0 than in CLM4.5, suggesting that SM is more sensitive to vegetation changes in CLM5.0.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available