4.5 Review

Industrialization of Layered Oxide Cathodes for Lithium-Ion and Sodium-Ion Batteries: A Comparative Perspective

Journal

ENERGY TECHNOLOGY
Volume 8, Issue 12, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ente.202000723

Keywords

cathodes; crystal chemistry; electrochemistry; layered oxides; sodium-ion batteries

Categories

Funding

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0005397]

Ask authors/readers for more resources

Lithium-ion batteries are ubiquitous in modern society, and their importance is rapidly increasing with the popularization of electric vehicles (EVs). Consumer electronics and EVs greatly benefit from lithium-ion batteries (LIBs) despite their high cost and limited materials abundance. However, large-scale applications, such as grid-scale energy storage require an alternative solution. Sodium-ion batteries (SIBs) have gained increasing attention within the last decade as an alternative solution to grid-scale storage as they utilize several cheaper and more abundant materials compared with LIBs. The most likely candidate for SIB industrialization will use a layered-oxide cathode, allowing comparisons to be drawn to the industrialization of lithium layered oxide cathodes. A notable difference between sodium and lithium layered oxides is the broader range of viable metals that reversibly insert sodium, and an even larger set of possible metal combinations. To predict the optimal compositions for SIB commercialization, herein, the fundamental crystal-chemical and electrochemical properties of each 3d transition-metal ion is examined and the history of LIB industrialization is discussed for further insight.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available