4.8 Article

Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators

Journal

NANO ENERGY
Volume 80, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2020.105515

Keywords

PVDF-TrFE; BaTiO3; Interface tailoring; Electrospinning; Piezoelectric nanogenerator

Funding

  1. National Natural Science Foundation of China [51877132]

Ask authors/readers for more resources

This study presents a novel approach of interface tailoring to enhance the dispersion and output performance of piezoelectric reinforcing phase in nanocomposites, which shows great potential for applications in nanogenerators.
Nanocomposites consisting of a flexible piezoelectric polymer and a reinforcing phase have shown great potential for constructing high-performance piezoelectric nanogenerators (PENGs). However, the weak interface and poor dispersion of piezoelectric reinforcing phase significantly impair the electromechanical properties (e.g., effective stress/strain, piezoelectric coefficients) of the nanocomposites, thus severely restricting the performance enhancement of the PENGs. In this study, we hydrothermally synthesized the piezoelectric reinforcing phase of BaTiO3 nanowires, and grafted a layer of high-modulus polymethyl methacrylate (PMMA) onto the nanowire surface via surface-initiated polymerization. The PMMA coating layer forms a strong interface between BaTiO3 nanowires and the polymer matrix [i.e., poly(vinylidenefluoride-co-trifluoroethylene)], which efficiently improves dispersion of the BaTiO3 nanowires and stress transfer at the interface, therefore resulting in an enhanced output performance in the fibrous nanocomposite PENGs. The output voltage and current of the PMMA encapsulated BaTiO3 (PMMA@BaTiO3) nanowires-based PENG can reach to 12.6 V and 1.30 mu A, with a maximum output power of 4.25 mu W, which is 2.2 times and 7.6 times higher than the PENG with unmodified BaTiO3 nanowires and the PENG without BaTiO3 nanowires, respectively. Furthermore, the flexible PENG exhibits great stability that could continuously generate stable electrical pulses for 6000 cycles without any decline. This study provides a feasible approach of interface tailoring for achieving high-performance piezoelectric nanocomposite and shows the promising potential of the fibrous nanocomposites in biomechanical energy harvesters and smart wearable sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available